Search results

1 – 1 of 1
Article
Publication date: 18 September 2009

Yuri N. Skiba and Denis M. Filatov

The purpose of this paper is to suggest a new approach to the numerical simulation of shallow‐water flows both in plane domains and on the sphere.

Abstract

Purpose

The purpose of this paper is to suggest a new approach to the numerical simulation of shallow‐water flows both in plane domains and on the sphere.

Design/methodology/approach

The approach involves the technique of splitting of the model operator by geometric coordinates and by physical processes. Specially chosen temporal and spatial approximations result in one‐dimensional finite difference schemes that conserve the mass and the total energy. Therefore, the mass and the total energy of the whole two‐dimensional split scheme are kept constant too.

Findings

Explicit expressions for the schemes of arbitrary approximation orders in space are given. The schemes are shown to be mass‐ and energy‐conserving, and hence absolutely stable because the square root of the total energy is the norm of the solution. The schemes of the first four approximation orders are then tested by simulating nonlinear solitary waves generated by a model topography. In the analysis, the primary attention is given to the study of the time‐space structure of the numerical solutions.

Originality/value

The approach can be used for the numerical simulation of shallow‐water flows in domains of both Cartesian and spherical geometries, providing the solution adequate from the physical and mathematical standpoints in the sense of keeping its mass and total energy constant even when fully discrete shallow‐water models are applied.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1